DR. DIRAC
Lecture No. 1

THE HAMILTONIAN METHOD

I’'m very happy to be here at Yeshiva and to have this
chance to talk to you about some mathematical methods
that I have been working on for a number of years. I
would like first to describe in a few words the general
object of these methods. -

In atomic theory we have to deal with various fields.
There are some fields which are very familiar, like
the electromagnetic and the gravitational fields; but in
recent times we have a number of other fields also to
concern ourselves with, because according to the general
ideas of De Broglie and Schrédinger every particle is
associated with waves and these waves may be considered
as a field. So we have in atomic physics the general
problem of setting up a theory of various fields in inter-
action with each other. We need a theory conforming to
the principles of quantum mechanics, but it is quite a
difficult matter to get such a theory.

One can get a much simpler theory if one goes over
to the corresponding classical mechanics, which is the
form which quantum mechanics takes when one makes
Planck’s constant # tend to zero. It is very much easier
to visualize what one is doing in terms of classical
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mechanies, It will be mainly about classical mechanics
that 1 shall be talking in these lectures.

Now you may think that that is really not good enough,
hecause classical mechanics is not good enough to
describe Nature. Nature is described by quantum
mechanics, Why should one, therefore, bother so much
about classical mechanics? Well, the quantum field
theories are, as I said, quite difficult and so far, people
have been able to build up quantum field theories only
for fairly simple kinds of fields with simple interactions
between them. It is quite possible that these simple fields
with the simple interactions between them are not
adequate for a description of Nature. The successes
which we get with quantum field theories are rather
limited. One is continually running into difficulties and
one would like to broaden one’s basis and have some
possibility of bringing more general fields into account.
For example, one would like to take into account the
possibility that Maxwell’s equations are not accurately
valid. When one goes to distances very close to the
charges that are producing the fields, one may have to
modify Maxwell’s field theory so as to make it into a non-
linear electrodynamics. This is only one example of the
kind of generalization which it is profitable to consider
in our present state of ignorance of the basic ideas, the
basic forces and the basic character of the fields of
atomic theory.

In order to be able to start on this problem of dealing
with more general fields, we must go over the classical
theory. Now, if we can put the classical theory into the
Hamiltonian form, then we can always apply certain
standard rules so as to get a first approximation to a
quantum theory. My talks will be mainly concerned with
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this problem of putting a general classical theory into the
Hamiltonian form. When one has done that, one is well
launched onto the path of getting an accurate quantum
theory. One has, in any case, a first approximation.

Of course, this work is to be considered as a prelimin-
ary piece of work. The final conclusion of this piece of
work must be to set up an accurate quantum theory, and
that involves quite serious difficulties, difficulties of a
fundamental character which people have been worrying
over for quite a number of years. Some people are so
much impressed by the difficulties of passing over from
Hamiltonian classical mechanics to quantum mechanics
that they think that maybe the whole method of working
from Hamiltonian classical theory is a bad method.
Particularly in the last few years people have been trying
to set up alternative methods for getting quantum field
theories. They have made quite considerable progress on
these lines. They have obtained a number of conditions
which have to be satisfied. Still I feel that these alterna-
tive methods, although they go quite a long way towards
accounting for experimental results, will not lead to a
final solution to the problem. I feel that there will always
be something missing from them which we can only get
by working from a Hamiltonian, or maybe from some
generalization of the concept of a Hamiltonian. So I take
the point of view that the Hamiltonian is really very
important for quantum theory.

In fact, without using Hamiltonian methods one cannot
solve some of the simplest problems in quantum theory,
for example the problem of getting the Balmer formula
for hydrogen, which was the very beginning of quantum
mechanics. A Hamiltonian comes in therefore in very
elementary ways and it seems to me that it is really quite
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susentinl o work from a Hamiltonian; so I want to talk
10 you ahout how far one can develop Hamiltonian
methods,

I would like to begin in an elementary way and I take
A8 Iy atarting point an action principle. That is to say, I
asaume that there is an action integral which depends on
the motion, such that, when one varies the motion, and
puts down the conditions for the action integral to be
stationary, one gets the equations of motion. The method
of starting from an action principle has the one great
advantage, that one can easily make the theory conform
to the principle of relativity. We need our atomic theory
to conform to relativity because in general we are dealing
with particles moving with high velocities.

If we want to bring in the gravitational field, then we
have to make our theory conform to the general principle
of relativity, which means working with a space-time
which is not flat. Now the gravitational field is not very
important in atomic physics, because gravitational forces
are extremely weak compared with the other kinds of
forces which are present in atomic processes, and for
practical purposes one can neglect the gravitational field.
People have in recent years worked to some extent on
bringing the gravitational field into the quantum theory,
but I think that the main object of this work was the hope
that bringing in the gravitational field might help to
solve some of the difficulties. As far as one can see at
present, that hope is not realized, and bringing in the
gravitational field seems to add to the difficulties rather
than remove them. So that there is not very much point
at present in bringing gravitational fields into atomic
theory. However, the methods which I am going to
describe are powerful mathematical methods which
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would be available whether one brings in the gravita-
tional field or not.
We start off with an action integral which I denote by

I= J‘L dt. (1-1)

It is expressed as a time integral, the integrand L being.
the Lagrangian. So with an action principle we have a
Lagrangian. We have to consider how to pass from that
Lagrangian to a Hamiltonian. When we have got the
Hamiltonian, we have made the first step toward getting
a quantum theory.

You might wonder whether one could not take the
Hamiltonian as the starting point and short-circuit this
work of beginning with an action integral, getting a
Lagrangian from it and passing from the Lagrangian to
the Hamiltonian. The objection to trying to make this
short-circuit is that it is not at all easy to formulate the
conditions for a theory to be relativistic in terms of the
Hamiltonian. In terms of the action integral, it is very
easy to formulate the conditions for the theory to be
relativistic: one simply has to require that the action
integral shall be invariant. One can easily construct
innumerable examples of action integrals which are
invariant. They will automatically lead to equations of
motion agreeing with relativity, and any developments
from this action integral will therefore also be in agree-
ment with relativity.

When we have the Hamiltonian, we can apply a
standard method which gives us a first approximation to
a quantum theory, and if we are lucky we might be able
to go on and get an accurate quantum theory. You might
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again wonder whether one could not short-circuit that
work to some extent. Could one not perhaps pass directly
from the Lagrangian to the quantum theory, and short-
circuit altogether the Hamiltonian ? Well, for some simple
examples one can do that. For some of the simple fields
which are used in physics the Lagrangian is quadratic
in the velocities, and is like the Lagrangian which one
has in the non-relativistic dynamics of particles. For these
examples for which the Lagrangian is quadratic in the
velocities, people have devised some methods for passing
directly from the Lagrangian to the quantum theory.
Still, this limitation of the Lagrangian’s being quadratic
in the velocities is quite a severe one. I want to avoid this
limitation and to work with a Lagrangian which can be
quite a general function of the velocities. To get a
general formalism which will be applicable, for example,
to the non-linear electrodynamics which I mentioned
previously, I don’t think one can in any way short-
circuit the route of starting with an action integral,
getting a Lagrangian, passing from the Langrangian to
the Hamiltonian, and then passing from the Hamiltonian
to the quantum theory. That is the route which I want to
discuss in this course of lectures.

In order to express things in a simple way to begin
with, I would like to start with a dynamical theory
involving only a finite number of degrees of freedom,
such as you are familiar with in particle dynamics. It
is then merely a formal matter to pass from this
finite number of degrees of freedom to the infinite num-
ber of degrees of freedom which we need for a field
theory.

Starting with a finite number of degrees of freedom,
we have dynamical coordinates which I denote by g.
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The general oneis ¢,, # = 1,---, N, N being the num-
ber of degrees of freedom. Then we have the velocities
dq,/dt = ¢,. The Lagrangian is a function L = L(g, ¢)
of the coordinates and the velocities.

You may be a little disturbed at this stage by the
importance that the time variable plays in the formalism.
We have a time variable ¢ occurring already as soon as
we introduce the Lagrangian. It occurs again in the
velocities, and all the work of passing from Lagrangian
to Hamiltonian involves one particular time variable.
From the relativistic point of view we are thus singling
out one particular observer and making our whole
formalism refer to the time for this observer. That, of
course, is not really very pleasant to a relativist, who
would like to treat all observers on the same footing.
However, it is a feature of the present formalism which
I do not see how one can avoid if one wants to keep to the
generality of allowing the Lagrangian to be any function
of the coordinates and velocities. We can be sure that the
contents of the theory are relativistic, even though the
form of the equations is not manifestly relativistic on
account of the appearance of one particular time in a
dominant place in the theory.

Let us now develop this Lagrangian dynamics and
pass over to Hamiltonian dynamics, following as closely
as we can the ideas which one learns about as soon as one
deals with dynamics from the point of view of working
with general coordinates. We have the Lagrangian
equations of motion which follow from the variation of
the action integral:

Y s 2 1.2
24,) = 7, (-2
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' go aver to the Hamiltonian formalism, we introduce
(he momentum variables p,, which are defined by
oL
P = 5e (1-3)

Now in the usual dynamical theory, one makes the
assumption that the momenta are independent functions
of the velocities, but that assumption is too restrictive for
the applications which we are going to make. We want
to allow for the possibility of these momenta not being
independent functions of the velocities. In that case,
there exist certain relations connecting the momentum
variables, of the type ¢(g, p) = 0.

There may be several independent relations of this
type, and if there are, we distinguish them one from
another by a suffix m = 1,..., M, so we have

$n(g, p) = 0. (1-4)

The ¢’s and the p’s are the dynamical variables of the
Hamiltonian theory. They are connected by the relations
(1-4), which are called the primary constraints of the
Hamiltonian formalism. This terminology is due to
Bergmann, and I think it is a good one.

Let us now consider the quantity p,g, — L. (When-
ever there is a repeated suffix I assume a summation
over all values of that suffix.) Let us make variations in
the variables g and ¢, in the coordinates and the velocities.
These variations will cause variations to occur in the
momentum variables p. As a result of these variations,

S(ann - L) oL L
s 4 0
= SPnQn + Pn SQn - (%) 8gn - (ﬁ') 84n
. (oL 2
= 8ann - (%’) 5% (1'5)
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by (1-3). Now you see that the variation of this quantity
Pndn— L involves only the variation of the ¢’s and that of
the p’s. It does not involve the variation of the velocities.
That means that p,g,L— can be expressed in terms of
the ¢’s and the p’s, independent of the velocities. Ex-
pressed in this way, it is called the Hamiltonian H.

However, the Hamiltonian defined in this way is not
uniquely determined, because we may add to it any
linear combination of the ¢’s, which are zero. Thus, we
could go over to another Hamiltonian

H* = H + Cm¢m’ (1'6)

where the quantities ¢, are coefficients which can be any
function of the ¢’s and the p’s. H* is then just as good as
H; our theory cannot distinguish between H and H*.
The Hamiltonian is not uniquely determined.

We have seen in (1-5) that

. oL
o = 4,89, ~ (57) San

This equation holds for any variation of the ¢’s and the
p’s subject to the condition that the constraints (1-4) are
preserved. The ¢’s and the p’s cannot be varied inde-
pendently because they are restricted by (1-4), but for
any variation of the ¢’s and the p’s which preserves these
conditions, we have this equation holding. From the
general method of the calculus of variations applied to a
variational equation with constraints of this kind, we

deduce
. _©oH O
qn = E + um% (1'7)
oL oH ¢,
nd —_——=— 4 u, ==
. o4,  0qy " 0gn
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i . _H o,

bn aq, Unm 3—9;’ (1-8)
with the help of (1-2) and (1-3), where the u, are
unknown coefficients. We have here the Hamiltonian
equations of motion, describing how the variables g and
P vary in time, but these equations involve unknown
coefficients u,,

It is convenient to introduce a certain formalism
which enables one to write these equations briefly,
namely the Poisson bracket formalism. It consists of the
following: If we have two functions of the ¢’s and the p’s,

say f(q, p) and g(g, p), they have a Poisson bracket
which is defined by i

U e oo
Us8) = 2. 2, ~ opr 3,

The Poisson brackets have certain properties which
follow from their definition, namely [f, g] is anti-
symmetric in f and g:

[fg = -[s11; (1-10)
it is linear in either member:

Ui+ fo 8l = [f1sg] + [far gl ete;  (1-11)
and we have the product law,
ifo 8] = filfo €] + [f1: glfor (1-12)

Final!y, there is the relationship, known as the Jacobi
Identity, connecting three quantities:

[/ (& 1] + [& [ 1] + [A [ 6]] = 0. (1-13)
With the help of the Poisson bracket, one can rewrite

[10]

(1-9)

THE HAMILTONIAN METHOD
the equations of motion. For any function g of the ¢’s
and the p’s, we have

.o . | %
§ =g It gy bu (1-14)

If we substitute for ¢, and p, their values given by (1-7)
and (1-8), we find that (1-14) is just

g = [g, H] oy um[g! Pl (1'15)

The equations of motion are thus all'written concisely in
the Poisson bracket formalism.

We can write them in a still more concise formalism
if we extend the notion of Poisson bracket somewhat.
As T have defined Poisson brackets, they have a meaning
only for quantities f and g which can be expressed in
terms of the ¢’s and the p’s. Something more general,
such as a general velocity variable which is not expressible
in terms of the ¢’s and p’s, does not have a Poisson
bracket with another quantity. Let us extend the meaning
of Poisson brackets and suppose that they exist for any
two quantities and that they satisfy the laws (1-10),
(1-11), (1-12), and (1-13), but are otherwise undeter-
mined when the quantities are not functions of the ¢’s
and p’s.

Then we may write (1-15) as

g =g H+ uudy). (1-16)

Here you see the coeflicients # occurring in one of the
members of a Poisson bracket. The coefficients #,, are
not functions of the ¢’s and the p’s, so that we cannot
use the definition (1-9) for determining the Poisson
bracket in (1-16). However, we can proceed to work out
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this Poisson bracket using the laws (1-10), ( 1-11), (1-12),
and (1-13). Using the summation law (1-11) we have:

s, H + Unpm] = [s Hi+ [s, um¢m] (1'17)
and using the product law (1-12),

L5, Unbm] = (g unldm + Ung, b (1'18)

The last bracket in (1-18) is well-defined, for g and P
are both functions of the ¢’s and the p’s. The Poisson
bracket [g, u,] is not defined, but it is multiplied by
something that vanishes, ¢,. So the first term on the
right of (1-18) vanishes. The result is that

[g) H + um¢m] . [g’ H] + um[g: ¢m]’ (1'19)

making (1-16) agree with (1-15).

There is something that we have to be careful about
in working with the Poisson bracket formalism: We
have the constraints (1-4), but must not use one of
these constraints before working out a Poisson bracket.
If we did, we would get a wrong result. So we take it as a
rule that Poisson brackets must all be worked out before
we make use of the constraint equations. T'o remind us of
this rule in the formalism, I write the constraints (1-4)
as equations with a different equality sign ~ from the
usual. Thus they are written

b ~ 0. (1-20)

I call such equations weak equations, to distinguish them
from the usual or strong equations.

One can make use of (1-20) only after one has worked
out all the Poisson brackets which one is interested in.
Subject to this rule, the Poisson bracket (1-19) is quite
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definite, and we have the possibility of writing our
equations of motion (1-16) in a very concise form:

& = [& Hy) (1-21)
with a Hamiltonian I call the fofal Hamiltonian,
Hy = H + uyd,. (1-22)

Now let us examine the consequences of these
equations of motion. In the first place, there will be
some consistency conditions. We have the quantities ¢
which have to be zero throughout all time. We can apply
the equation of motion (1-21) or (1-15) taking g to be one
of the ¢’s. We know that ¢ must be zero for consistency,
and so we get some consistency conditions. Let us see
what they are like. Putting g = ¢,, and ¢ = 0 in (1-15),
we have: '

[$mr H] + tm[bm> p] = 0. (1-23)

We have here a number of consistency conditions, one
for each value of m. We must examine these conditions
to see what they lead to. It is possible for them to lead
directly to an inconsistency. They might lead to the
inconsistency 1 = 0. If that happens, it would mean
that our original Lagrangian is such that the Lagrangian
equations of motion are inconsistent. One can easily
construct an example with just one degree of freedom.
If we take L = ¢ then the Lagrangian equation of motion
(1-2) gives immediately 1 = 0. So you see, we cannot
take the Lagrangian to be completely arbitrary. We must
impose on it the condition that the Lagrangian equations
of motion do not involve an inconsistency. With this
restriction the equations (1-23) can be divided into three
kinds.

[13]
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One kind of equation reduces to 0 = 0, i.e. it is
identically satisfied, with the help of the primary con-
straints,

Another kind of equation reduces to an equation
independent of the #’s, thus involving only the ¢’s and
the p’s. Such an equation must be independent of the
primary constraints, otherwise it is of the first kind.
Thus it is of the form

x(¢, p) = 0. (1-24)

Finally, an equation in (1-23) may not reduce in either
of these ways; it then imposes a condition on the #’s.

The first kind we do not have to bother about any
more. Each equation of the second kind means that we
have another constraint on the Hamiltonian variables.
Constraints which turn up in this way are called sec-
ondary constraints. They differ from the primary con-
straints in that the primary constraints are consequences
merely of the equations (1-3) that define the momentum
variables, while for the secondary constraints, one has to
make use of the Lagrangian equations of motion as well.

If we have a secondary constraint turning up in our
theory, then we get yet another consistency condition,
because we can work out y according to the equation of
motion (1-15) and we require that y ~ 0. So we get
another equation

[X’ H] = um[X) ¢m] = 0. (1'25)

This equation has to be treated on the same footing as
(1-23). One must again see which of the three kinds it is.
If it is of the second kind, then we have to push the
process one stage further because we have a further
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secondary constraint. We carry on like that until we have
exhausted all the consistency conditions, and the final
result will be that we are left with a number of secondary
constraints of the type (1-24) together with a number of
conditions on the coefficients u of the type (1-23).

The secondary constraints will for many purposes be
treated on the same footing as the primary constraints.
It is convenient to use the notation for them:

$ex0, k=M+1,...,M+K, (1-26)

where K is the total number of secondary constraints.
They ought to be written as weak equations in the same
way as primary constraints, as they are also equations
which one must not make use of before one works out
Poisson brackets. So all the constraints together may be
written as

$; 20, j=1,...M+K=%  (1-27)

Let us now go over to the remaining equations of the
third kind. We have to see what conditions they impose
on the coefficients «. These equations are

(b5 H] + tnldy $ul = 0 (1-28)

where m is summed from 1 to M and j takes on any of the
values from 1 to ¥. We have these equations involving
conditions on the coefficients u, insofar as they do not
reduce merely to the constraint equations.

Let us look at these equations from the following
point of view. Let us suppose that the «’s are unknowns
and that we have in (1-28) a number of non-homogeneous
linear equations in these unknowns %, with coefficients
which are functions of the ¢’s and the p’s. Let us look

[15]
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for a solution of these equations, which gives us the
u’s as functions of the ¢’s and the p’s, say

Up = m(% P) (1'29)

There must exist a solution of this type, because if there
were none it would mean that the Lagrangian equations
of motion are inconsistent, and we are excluding that
case.

The solution is not unique. If we have one solution,
we may add to it any solution V,(g, p) of the homogene-
ous equations associated with (1-28):

Vm[‘ﬁi’ ¢m] =0, (1'30)

and that will give us another solution of the inhomogene-
ous equations (1-28). We want the most general solution
of (1-28) and that means that we must consider all the
independent solutions of (1-30), which we may denote by
Vem(@: P), @ = 1,..., A. The general solution of (1-28)
is then

Up = Uy + 0.V, (1-31)

in terms of coefficients v, which can be arbitrary.

Let us substitute these expressions for # into the total
Hamiltonian of the theory (1-22). That will give us the
total Hamiltonjan

Hy = H + Updp + 05V ombm. (1-32)
We can write this as
H, = H' + v,¢,, (1-33)
where H =H + Uy, (1-33)
and b= Vnus (1-34)
[16]
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In terms of this total Hamiltonian (1-33) we still have the
equations of motion (1-21).

As a result of carrying out this analysis, we have
satisfied all the consistency requirements of the theory
and we still have arbitrary coefficients v. The number of
the coefficients v will usually be less than the number of
coefficients #. The #’s are not arbitrary but have to
satisfy consistency conditions, while the ’s are arbitrary
coefficients. We may take the ©’s to be arbitrary functions
of the time and we have still satisfied all the requirements
of our dynamical theory.

This provides a difference of the generalized Hamil-
tonian formalism from what one is familiar with in
elementary dynamics. We have arbitrary functions of the
time occurring in the general solution of the equations
of motion with given initial conditions. These arbitrary
functions of the time must mean that we are using a
mathematical framework containing arbitrary features,
for example, a coordinate system which we can choose
in some arbitrary way, or the gauge in electrodynamics.
As a result of this arbitrariness in the mathematical
framework, the dynamical variables at future times are
not completely determined by the initial dynamical
variables, and this shows itself up through arbitrary
functions appearing in the general solution.

We require some terminology which will enable one to
appreciate the relationships between the quantities which
occur in the formalism. I find the following terminology
useful. I define any dynamical variable, R, a function of
the ¢’s and the p’s, to be first-class if it has zero Poisson
brackets with all the ¢’s:

[R$]x0, j=1,...,% (1-35)
[17]
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It is sufficient if these conditions hold weakly. Otherwise
R is second-class. If R is first-class, then [R, ¢;] has to be
strongly equal to some linear function of the ¢’s, as
anything that is weakly zero in the present theory is
strongly equal to some linear function of the ¢’s. The ¢’s
are, by definition, the only independent quantities which
are weakly zero. So we have the strong equations

[R, ;] = 1539 (1-36)

Before going on, I would like to prove a

Theorem: the Poisson bracket of two first-class
quantities is also first-class. Proof. Let R, .S be first-class:
then in addition to (1-36), we have

[S, é5] = 5,995 (1-36)

Let us form [[R, S], ¢;]. We can work out this Poisson
bracket using Jacobi’s identity (1-13)

[[R, 81, ;] = [[R ¢, S] ~ [[S, ¢1], R]

= [rjy$s, S1 — [s¢s R]
ripldis ST+ [rip Sléyr — s7[$5 K]

= [8;» Ry

=0
by (1-36), (1-36)’, the product law (1-12), and (1-20).
The whole thing vanishes weakly. We have proved
therefore that [R, S] is first-class.

We have altogether four different kinds of constraints.

We can divide constraints into first-class and second-
class, which is quite independent of the division into

primary and secondary.
I would like you to notice that H’ given by (1-33)" and

[18]
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the ¢, given by (1-34) are first-class. Forming the
Poisson bracket of 4, with ¢, we get, by (1-34),
Veamlém #;]1 plus terms that vanish weakly. Since the
Vom are defined to satisfy (1-30), ¢, is first-class.
Similarly (1-28) with U, for u, shows that H’ is first-
class. Thus (1-33) gives the total Hamiltonian in terms
of a first-class Hamiltonian H’ together with some first-
class ¢’s.

Any linear combination of the ¢’s is of course another
constraint, and if we take a linear combination of the
primary constraints we get another primary constraint.
So each ¢, is a primary constraint; and it is first-class.
So the final situation is that we have the total Hamil-
tonian expressed as the sum of a first-class Hamiltonian
plus a linear combination of the primary, first-class
constraints. '

The number of independent arbitrary functions of the
time occurring in the general solution of the equations of
motion is equal to the number of values which the suffix
a takes on. That is equal to the number of independent
primary first-class constraints, because all the independ-
ent primary first-class constraints are included in the
sum (1-33).

That gives you then the general situation. We have
deduced it by just starting from the Lagrangian equa-
tions of motion, passing to the Hamiltonian and working
out consistency conditions.

From the practical point of view one can tell from the
general transformation properties of the action integral
what arbitrary functions of the time will occur in the
general solution of the equations of motion. To each of
these functions of the time there must correspond some
primary first-class constraint. So we can tell which

[19]
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primary first-class constraints we are going to have
without going through all the detailed calculation of
working out Poisson brackets; in practical applications
of this theory we can obviously save a lot of work by
using that method.

I would like to go on a bit more and develop one
further point of the theory. Let us try to get a physical
understanding of the situation where we start with
given initial variables and get a solution of the equations
of motion containing arbitrary functions. The initial
variables which we need are the ¢’s and the p’s. We
don’t need to be given initial values for the coefficients v.
These initial conditions describe what physicists would
call the snitial physical state of the system. The physical
state is determined only by the ¢’s and the p’s and not by
the coefficients v.

Now the initial state must determine the state at later
times. But the ¢’s and the p’s at later times are not
uniquely determined by the initial state because we have
the arbitrary functions v coming in. That means that the
state does not uniquely determine a set of ¢’s and p’s,
even though a set of ¢’s and p’s uniquely determines a
state. There must be several choices of ¢’s and p’s which
correspond to the same state. So we have the problem
of looking for all the sets of ¢’s and p’s that correspond to
one particular physical state.

All those values for the ¢’s and p’s at a certain time
which can evolve from one initial state must correspond
to the same physical state at that time. Let us take partic-
ular initial values for the ¢’s and the p’s at time t = 0,
and consider what the ¢’s and the p’s are after a short
time interval 2. For a general dynamical variable g, with
initial value gy, its value at time 8t is

[20]
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8(81) = go + g &t
=g + [g Hy] 8t
= & + 8{[g, H'] + v,[g, ¢]}. (1-37)

The coefficients v are completely arbitrary and at our
disposal. Suppose we take different values, ¢/, for these
coefficients. That would give a different &(8t), the
difference being

Ag(81) = St(vy — vg)[g, dal- (1-38)

We may write this as
dg(8t) = eilg, ba), (1-39)
where &g = St(v, — V) (1-40)

is a small arbitrary number, small because of the coeffi-
cient 8t and arbitrary because the »’s and the v”’s are
arbitrary. We can change all our Hamiltonian variables
in accordance with the rule (1-39) and the new Hamil-
tonian variables will describe the same state. This
change in the Hamiltonian variables consists in applying
an infinitesimal contact transformation with a generating
function e,p,. We come to the conclusion that the ba’s,
which appeared in the theory in the first place as the
primary first-class constraints, have this meaning: as
generating functions of infinitesimal contact transformations,
they lead to changes in the ¢'s and the P’s that do not
affect the physical state.

However, that is not the end of the story. We can goon
further in the same direction. Suppose we apply two of
these contact transformations in succession. Apply first
a contact transformation with generating function

[21]
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e, and then apply a second contact transformation

with generating function y,.¢,, where the gamma’s are
some new small coefficients. We get finally

& =g + 28 ba] + volg + g, dal, $al- (1-41)

(I retain the second order terms involving products
ey, but I neglect the second order terms involving &* or
involving 2. This is legitimate and sufficient. I do that
because I do not want to write down more than I really
need for getting the desired result.) If we apply the two
transformations in succession in the reverse order, w
get finally

g = go + valg dal + sa[g + volg $als ¢a]' (1-42)

Now let us subtract these two. The difference is

dg = eye{[le: #ad 8] — [[&s$a] b} (1-43)
By Jacobi’s identity (1-13) this reduces to
dg = eu')’a’[g» [fas ¢a’]]' (1-44)

This 4g must also correspond to a change in the ¢’s and
the p’s which does not involve any change in the physical
state, because it is made up by processes which in-
dividually don’t involve any change in the physical
state. Thus we see that we can use

[ba bo] (1-45)

as a generating function of an infinitesimal contact
transformation and it will still cause no change in the
physical state.
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Now the ¢, are first-class: their Poisson brackets are
weakly zero, and therefore strongly equal to some linear
function of the ¢’s. This linear function of the ¢’s must
be first-class because of the theorem I proved a little
while back, that the Poisson bracket of two first-class
quantities is first-class. So we see that the transformations
which we get this way, corresponding to no change in the
physical state, are transformations for which the genera-
ting function is a first-class constraint. The only way
these transformations are more general than the ones we
had before is that the generating functions which we had
before are restricted to be first-class primary constraints.
Those that we get now could be first-class secondary
constraints. The result of this calculation is to show that
we might have a first-class secondary constraint as a
generating function of an infinitesimal contact trans-
formation which leads to a change in the ¢’s and the p’s
without changing the state.

For the sake of completeness, there is a little bit of
further work one ought to do which shows that a Poisson
bracket [H’, ¢,] of the first-class Hamiltonian H’ with
a first-class ¢ is again a linear function of first-class
constraints. This can also be shown to be a possible
generator for infinitesimal contact transformations
which do not change the state.

The final result is that those transformations of the
dynamical variables which do not change physical states
are infinitesimal contact transformations in which the
generating function is a primary first-class constraint or
possibly a secondary first-class constraint. A good many
of the secondary first-class constraints do turn up by the
process (1-45) or as [H', ¢,]. I think it may be that all the
first-class secondary constraints should be included
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* transfc hmtions which don’t change the
I ntate , but I haven’t been able to prove it. Also, I
found any example for which there exist first-class
constraints which do generate a change in the
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